Binary Black Hole Mergers in the first Advanced LIGO Observing Run

ثبت نشده
چکیده

The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers. In this paper we present full results from a search for binary black hole merger signals with total masses up to 100M and detailed implications from our observations of these systems. Our search, based on general-relativistic models of gravitational wave signals from binary black hole systems, unambiguously identified two signals, GW150914 and GW151226, with a significance of greater than 5σ over the observing period. It also identified a third possible signal, LVT151012, with substantially lower significance, which has a 87% probability of being of astrophysical origin. We provide detailed estimates of the parameters of the observed systems. Both GW150914 and GW151226 provide an unprecedented opportunity to study the two-body motion of a compact-object binary in the large velocity, highly nonlinear regime. We do not observe any deviations from general relativity, and place improved empirical bounds on several high-order post-Newtonian coefficients. From our observations we infer stellarmass binary black hole merger rates lying in the range 9–240Gpc−3 yr−1. These observations are beginning to inform astrophysical predictions of binary black hole formation rates, and indicate that future observing runs of the Advanced detector network will yield many more gravitational wave detections.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upper Limits on the Rates of Binary Neutron Star and Neutron Star–black Hole Mergers from Advanced Ligo’s First Observing Run

We report here the non-detection of gravitational waves from the merger of binary–neutron star systems and neutron star–black hole systems during the first observing run of the Advanced Laser Interferometer Gravitationalwave Observatory (LIGO). In particular, we searched for gravitational-wave signals from binary–neutron star systems with component masses Î  M 1, 3 [ ] and component dimensionl...

متن کامل

Upper Limits on the Rates of Binary Neutron Star and Neutron Star–black Hole Mergers from Advanced Ligo’s First Observing Run

We report here the non-detection of gravitational waves from the merger of binary–neutron star systems and neutron star–black hole systems during the first observing run of the Advanced Laser Interferometer Gravitationalwave Observatory (LIGO). In particular, we searched for gravitational-wave signals from binary–neutron star systems with component masses Î  M 1, 3 [ ] and component dimensionl...

متن کامل

Upper Limits on the Rates of Binary Neutron Star and Neutron Star–black Hole Mergers from Advanced Ligo’s First Observing Run

We report here the non-detection of gravitational waves from the merger of binary–neutron star systems and neutron star–black hole systems during the first observing run of the Advanced Laser Interferometer Gravitationalwave Observatory (LIGO). In particular, we searched for gravitational-wave signals from binary–neutron star systems with component masses Î  M 1, 3 [ ] and component dimensionl...

متن کامل

Upper Limits on the Rates of Binary Neutron Star and Neutron Star–black Hole Mergers from Advanced Ligo’s First Observing Run

We report here the non-detection of gravitational waves from the merger of binary–neutron star systems and neutron star–black hole systems during the first observing run of the Advanced Laser Interferometer Gravitationalwave Observatory (LIGO). In particular, we searched for gravitational-wave signals from binary–neutron star systems with component masses Î  M 1, 3 [ ] and component dimensionl...

متن کامل

Upper Limits on the Rates of Binary Neutron Star and Neutron Star–black Hole Mergers from Advanced Ligo’s First Observing Run

We report here the non-detection of gravitational waves from the merger of binary–neutron star systems and neutron star–black hole systems during the first observing run of the Advanced Laser Interferometer Gravitationalwave Observatory (LIGO). In particular, we searched for gravitational-wave signals from binary–neutron star systems with component masses Î  M 1, 3 [ ] and component dimensionl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016